
HyCASTLE: a Hybrid ClAssification System based on Typicality, Labels and
Entropy.

Michele Delli Veneria, Antonio Picarielloa,e, Stefano Cavuotib,c, Massimo Bresciab, Giancarlo Sperlı̀a, Vincenzo
Moscatoa, Roberto Abbruzzesef,g, Giuseppe Longoc,d

aDepartment of Information Technology and Electrical Engineering (DIETI), University of Naples Federico II, Via Claudio 21, 80125, Italy.
bINAF - Astronomical Observatory of Capodimonte, Salita Moiariello 16, I-80131 Napoli, Italy

cDepartment of Physics “E. Pancini”, University of Naples Federico II, via Cintia, 21, I-80126 Napoli, Italy
dNapoli Unit of the INFN, via Cinthia, 21, I-80126 Napoli, Italy

eCINI - ITEM National Lab, Complesso Universitario Monte S.Angelo, Naples, Italy
fEustema S.p.A., Via G. Porzio,4, 80143 Napoli, Italy

gDipartimento Scienze Aziendali - Management & Innovation Systems, University of Salerno

Abstract

Traditional supervised classification models aim to approximate the functional mapping between instance attributes
and their class labels. These models, however, do not consider the interdependence between instances and global
characteristics of data and thus often they lead to poor classification results. In this work, we present a novel hybrid
classification model – named HyCASTLE – designed to solve the main shortcomings of hybrid models: they make
hypotheses on the underlying data distribution and do not consider the effect of noise. HyCASTLE utilizes a non-
parametric estimator to capture the underlying data distribution and creates entirely data-driven shape-free clusters.
HyCASTLE then refines this cluster configuration using both data topology and available labels through an iterative
cluster aggregation and separation process. We evaluated HyCASTLE performance on 35 datasets and compare it
with both traditional and hybrid classification models. Our results show that HyCASTLE has comparable or better
performance than the other models and results to be more resilient to class noise.

Keywords: machine learning, hybrid models, multi-class classification, supervised classification, clustering

1. Introduction

In the last few decades, several algorithmic solutions
have been proposed to tackle the problem of classifica-
tion and, to date, most of them are supervised learning
approaches. In such a context, class labels for the train-
ing set are known, and the goal of the algorithms is to
approximate the functional mapping between the sam-
ple attributes and the class labels. When the mapping
is known, it can be used to predict the class labels for
unseen samples. Although these algorithms have of-
ten shown good performances on a plethora of appli-
cations, they do not consider the inherent structure of
the data when constructing the modelling and assume
that the instances are drawn from independent distri-
butions, thus ignoring all possible inter-dependencies
between instances themselves[1]. Unsupervised learn-
ing, on the contrary, refers to the problem of identify-
ing groups of instances that share common properties
and can be used to map inter-dependencies within the

data. In recent years, there have been several attempts to
build hybrid approaches combining unsupervised clus-
tering and classification through the intuition that un-
supervised clustering methods group instances on the
basis of their mutual relationships and thus can pro-
vide constraints suitable for a classification algorithms
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

1.1. Literature Review
The usual way of constructing such hybrid models

is to combine a clustering algorithm, most of the time
density or graph-based, with a common supervised clas-
sification algorithm such as Iterative Dichotomiser 3
(ID3 Breiman et al. 13) , C4.5 [14], multi-interval ID3
(M-I ID3) [15], k-nearest neighbours (KNN) [16], Sup-
port Vector Machines (SVM) [17], naive Bayes [18], lo-
gistic regression (LR) [19] and neural networks [20].
More recently, Deep Learning has also been applied
with some moderate success on structured data but,
usually, good performance with this type of models is

Preprint submitted to Knowledge Based Systems February 23, 2021

achieved through extensive training in data-rich envi-
ronments. Hence, they suffer from a limited range of
applications and a high computational cost.

Archaya et al. [21] proposed to use clustering as a
post-processing technique, in order to refine the output
obtained by a classifier, while Chakraborty et al. [10]
combined multiple clustering and classification meth-
ods using a convex optimization function. Rajamo-
hamed et al. [8] merged the clustering obtained through
a K-mean, with five supervised classification models.
The best results were achieved with the use of a Sup-
port Vector Machine as classifier (RK+SVM). Gaddam
et al. proposed a hybrid model called K-means+ID3 [9],
which first separates the data into K disjoint clusters and
then trains an ID3 decision tree on each cluster. Bertini
et al. proposed a method called Attribute-based Deci-
sion Graph (AbDG, Bertini et al. 12) for constructing
a new type of graph, called Attribute-based Decision
Graph. In particular, given a vector-based data set, an
AbDG is built by partitioning each data attribute range
into disjoint intervals and representing each interval as
a vertex. The edges are then established between ver-
tices from different attributes according to a pre-defined
pattern. Classification is performed through a match-
ing process among the attribute values of the new in-
stance and AbDG. Bose et al. proposed a two-stage
hybrid model called KM-Boosted C5.0 [5], composed
by an unsupervised clustering algorithm and a boosted
C5.0 algorithm. Kaechinport et al. proposed a novel
hybrid model called tree bagging and weighted cluster-
ing (TBWC) [6] in which important attributes and their
weights are found by applying a decision tree bagging
and then this weighted attributed are used to generate
clusters with which new instances are classified. Ma et
al. proposed a novel hybrid algorithm called spectral
clustering and deep neural network (SCDNN) [11] in
which spectral clustering is combined with Deep Neu-
ral Networks (DNN). Their algorithm first proceeds by
dividing the training set into K clusters, for which they
compute the centroids and then by training a DNN on
each of these clusters. Afterwards, by using a similarity
criterion, the test set is divided into K clusters, and each
subset is processed by the most appropriate DNN. Fi-
nally, Xiao et al. proposed a hybrid classification frame-
work based on clustering (HCFC) [7], which firstly ap-
plies a clustering algorithm to partition the training sam-
ples in K clusters and then constructs a clustering-based
attribute selection measure (hybrid information gain ra-
tio), based upon a C4.5 [14] decision tree training. As
a clustering algorithm, they chose to test both an im-
proved version of the K-means algorithm [22] and DB-
SCAN algorithm [23].

1.2. Our Motivations

All cited authors in Sec. 1.1 provided useful insights
in the development of hybrid models scenario, however,
we can trace some common shortcomings for such mod-
els:

• they are mostly based on clustering algorithms that
make assumptions on the underlying data distribu-
tion, thus resulting in predefined numbers of clus-
ters (in the case of K-means-like approaches) or in
clusters with an imposed shape;

• they all have well separated clustering and classifi-
cation phases. They start with clustering and then,
on the basis of the extracted information, perform
the classification. However, they do not use in-
formation acquired during classification to update
their clustering results;

• with the exception of [7], they do not consider the
effect of noise on the performances of the imple-
mented methods. A limitation which prevents their
usage in many fields.

1.3. Our Contribution

We propose a novel method named Hybrid ClAssifi-
cation System based on Typicality, Labels and Entropy
(HyCASTLE), which makes use of the typicality, firstly
introduced by Angelov et al. [24], to find the initial clus-
tering and maps the training set onto a cluster configura-
tion, in which the number,size and shape of the clusters
are dictated by the data topology in an unsupervised ap-
proach.

The algorithm then proceeds by applying a clus-
ter aggregation/separation strategy recursively, until it
reaches a minimum in the cluster’s configuration en-
tropy. During aggregation, the algorithm computes the
cluster’s centroids distance distribution (DC), and sepa-
rates the clusters, based on their member’s labels, in a
number of groups equals to the number of classes ob-
served in the data plus one containing multi-class clus-
ters. A graph is constructed on each group by selecting
clusters centroids as nodes, and their cluster Gini index
as an attribute. In groups containing pure clusters, an
edge is created between two given nodes if their mu-
tual distance is shorter than the mean of DC multiplied
by a user-defined coefficient α (distance based thresh-
old). At the same time, in the group containing spurious
clusters an edge is created if the two clusters meet the
distance-based threshold and if their aggregation mini-
mizes the Gini index of the cluster configuration. Then
the algorithm finds all sets of connected components in

2

each group and aggregates them. The cluster’s centroids
distance distribution is then re-computed, and the ag-
gregation process goes on until no edges can be created.
During separation, a Classification and Regression Tree
(CART) model [13] is trained on each cluster and di-
vides it based on its information content. Each cluster is
then replaced by a number of sub-clusters equaling the
number of leaf nodes produced by the tree. In the pre-
diction phase, the algorithm computes the probability
that a given instance may belong to all cluster present in
the cluster configuration found after the training stage.
Then, in order to compute class probabilities, all prob-
abilities of single-class clusters, i.e. pure clusters, are
added together to form the respective class probability.
Instead, the probabilities relative to multi-class clusters,
i.e. spurious clusters, are divided among class probabil-
ities, proportionally to each class frequency found in the
clusters. The experiments performed on 35 UCI (Uni-
versity of California Irvine) [25] datasets show that our
model achieves better or comparable results than those
obtained with the models proposed by Bertini et al. [12]
and Xiao et al. [7] and several others hybrid and pure
classification models. The main novelties of HyCAS-
TLE can be summarized as follows:

1. the algorithm does not make any prior assumption
on the underlying probability distribution of the
data and therefore produces a cluster configuration
whose members are free to take any given shape.
Moreover, it can identify outliers in the training set
and eliminate them in order to avoid their effect on
the measure of the topological proprieties of the
data;

2. we propose a hybrid instance assignment method
that takes into account both the topological proper-
ties of the data and its labels to refine clusters. This
is done in order to create clusters through a com-
promise between the unknown truth (the topologi-
cal structure of the data) and the known (labels);

3. an optimization loop updates the clustering on the
basis of the classification results, in order to mini-
mize the cluster configuration entropy. This search
is performed with a dynamical topological con-
strain;

4. the method utilizes all cluster information acquired
in the training phase in order to minimize the im-
pact of noise on the prediction efficiency, .

1.4. Article Structure
This article is organized as follows: Sec. 2 introduces

the key-concepts on which HyCASTLE is built upon,
Sec. 3 shows in details the HyCASTLE architecture and

its train and prediction phases and includes the com-
plexity analysis. Sec. 4 presents the analysis of the pa-
rameters, the experiments results and the corresponding
analysis, while the conclusions are drawn in Sec. 5.

2. Theoretical Premises

Introduced by Angelov et al. [24], the typicality is
a non-parametric estimator for discrete data sets, de-
rived using only statistical properties of the data them-
selves. In connected graph theory, the centrality [26]
is defined as the average length of the shortest path be-
tween a node in the graph and all other nodes. Given
an N-dimensional data set, for each instance xi, we can
compute the cumulative proximity qN(xi), which can be
recognised as an inverse centrality with a squared dis-
tance:

qN(xi) =

N∑
j=1

d2(xi; x j) (1)

where d2(xi; x j) is the squared distance between the
instance xi and every other instance x j. From the cumu-
lative proximity, we can define the Eccentricity εN(xi)
that quantifies data samples away from the mode:

εN(xi) =
2qN(xi)

1
N
∑N

j=1 qN(x j)
. (2)

The Discrete local density DN(xi) is the inverse of the
Eccentricity, and the typicality τN(xi) is the normalized
Discrete local density:

τN(xi) =
DN(xi)∑N

j=1 DN(x j)
. (3)

The typicality resembles an uni-modal probability
mass function and, when combined with the Chebyshev
Inequality [27]:

|τ(xi) − µτ| > 3στ (4)

where τ(xi) is the typicality of the scrutinized instance,
µτ is the average data typicality and στ its standard de-
viation, it can be used for outliers detection. Angelov
et al. [24] showed that typicality possesses all the prop-
erties of a Probability Density Function (PDF) and thus
can be used to capture the topological structure of the
data. In particular, it can be used to capture local modes
in the data and form shape-free clusters around the local
maxima of the typicality distribution.
Our proposed method builds upon the work developed
by Angelov et al. [24] and uses the typicality clusters
as the pre-processing step of a classification algorithm.

3

The Gini Index or Coefficient [28] is a measure of sta-
tistical dispersion that quantifies the inequalities among
values of a frequency distribution. A Gini coefficient
of 1 expresses the maximum inequality among values.
Given a set of instances with J classes with i ∈ 1, 2, ..., J
and pi the fraction of items labeled with class i in the set,
we define the Gini Index as:

IG(p) = 1 −
J∑

i=1

p2
i . (5)

3. HyCASTLE

Data

Tipicality
Clustering

Clusters Supports
𝑆(𝐼𝐷𝑐 , 𝑁𝑐)

Threshold
Computation

Purity
Grouping

Group Aggregation
Number of Edges (𝑁𝐸)

𝑁𝐸 ≠ 0

Aggregate

Apply CART

𝐼𝐷𝑐′ > 𝐼𝐷𝑐
AND

𝐼𝐷𝑐′ ≥ 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

Yes

Yes

No

NoExit

Aggregation Phase

Separation Phase

Figure 1: HyCASTLE training workflow. The two coloured blocks
represent, respectively, the Aggregation phase (red) and the Separa-
tion Phase of the algorithm training (blue). For a detailed explanation
of the flowchart refer to Section 3.1.

HyCASTLE is an iterative supervised classification
algorithm aiming at finding a cluster configuration that
maximizes cluster purity (i.e. the percentage of data
correctly assigned to the right cluster). Its workflow is
shown in Figure 1.
We define a cluster as a set of input instances that form
a high typicality connected region, which is separated
from other clusters by low typicality connected regions.
The proposed method relies on geometrical and topo-
logical features (a similarity measure and the inherent
structure of the parameter space derived from the typi-
cality distribution) to find and aggregate clusters while
using the Gini index to measure the wrong assignments

to the clusters and to modify the cluster configuration in
order to improve the classification task. The proposed
method requires as parameters a metric in order to com-
pute distances both between instances and clusters, a
distance threshold α necessary to select clusters that are
close enough in the parameter space to be selected as
candidates for aggregation and k, i.e. the number of
points of each cluster that are selected as representa-
tives of that cluster in prediction. Usually, both graph
and density-based clustering methods require a parame-
ter that is used as a threshold to decide if two instances
or cluster are connected. While this parameter usually
has a constant impact in training [23, 29, 30], in Hy-
CASTLE case, since cluster shapes and support sizes
are changing during training, their mutual distances are
changing too and thus the threshold α parameter has a
dynamic impact.

3.1. HyCASTLE Training
As in many others distance-based algorithms such as

the k-nearest neighbour classifier [31] or k-means [32],
choosing the most appropriate distance metric becomes
crucial to solve a specific classification problem. Usu-
ally, in real-world datasets, features ranges may arbitrar-
ily vary: some features could present variations of order
of magnitude higher than others, and some metrics, like
the Euclidean, may suffer heavily from such disparity of
variation ranges, impacting on their final performance.
Therefore, a mandatory pre-processing step of the pro-
posed algorithm consists of normalizing the numerical
attributes by modifying their values through the follow-
ing scaling formula:

xi = (xi − min(X))/(max(X) − min(X)) (6)

where xi is an attribute value for the current instance
and X is the entire range of values of that attribute.
Moreover, because HyCASTLE cannot handle cate-
gorical attributes if an ordering could be established,
we employed an Ordinal Encoding [1]; otherwise, we
employed a One-Hot encoding, also known as 1-of-K
scheme [1], to convert the categorical attributes in nu-
merical ones.

The algorithms then proceeds (Typicality Clustering
in Figure 1) by computing the typicality distribution
τN(X) of the data through Eq. 3.
Outliers may affect the typicality distribution and, thus,
they must be identified and excluded from the rest of the
procedure. We use the PDF-like properties of the typ-
icality distribution and combine them with the Cheby-
shev Inequality through Eq. 4. If an instance satisfies
Eq. 4, then it is labelled as an outlier and removed from
the data.

4

After outlier removal, the typicality distribution
τN(X) must be recomputed through Eq. 3. To define
the local modes in typicality, data are ordered starting
with the instance presenting the highest typicality value.
Then the local maxima in typicality are found by a sim-
ple comparison of neighbouring values and, through the
geometrical information (distance), all instances are as-
signed to these local maxima (or pivots) to form the ini-
tial set of clusters. All cluster characteristics, i.e. their
index IDc and support size Nc, are stored in a dictio-
nary S (IDc,Nc) and each instance membership is de-
fined through the IDc of the closest pivot. The pseudo-
code of the Typicality Clustering phase is shown in the
Algorithm 1.

Given that the typicality-based clustering reflects the
actual data distribution, it may not be optimal to deal
with a classification problem. This eventuality may
come from the existence of clusters sharing the same
labels and close enough to be unified or due to the ne-
cessity of separating clusters containing instances with
different labels if these instances are geometrically sep-
arable. The underlying hypothesis is that the optimal
cluster configuration lays between the data-driven clus-
tering found through typicality and simple label-driven
cluster separation. Thus it begins the aggregation phase
of the algorithm (red box in Figure 1); this phase is com-
posed of the three steps that are hereafter listed:

1. Threshold Computation: all cluster centroids, i.e.
the clusters barycenters, are computed and their
mutual distances distribution is recorded. Then the
potential neighbours threshold is computed as fol-
lows:

td = α · mean(Dc) (7)

where α is a user defined parameter and Dc is
the cluster’s centroids distance distribution. The
pseudo-code of this step is shown in the Algo-
rithm 2;

2. Purity Grouping: clusters are separated on the ba-
sis of their member’s labels in a number of groups
equaling the number of detected classes in the data
plus one containing spurious clusters. This oper-
ation is performed in order to decrease the com-
putational time required to perform the aggrega-
tion given that for pure groups no Gini index must
be computed in order to aggregate clusters. The
pseudo-code of this step is shown in the Algo-
rithm 3;

3. Group Aggregation: a graph is constructed from
each group of clusters found in the purity group-
ing step. Each node of the graph represents a
cluster and is defined through the cluster centroid

Algorithm 1 Typicality Clustering
Require: data D, metric, labels L
Ensure: data ranked D, labels ranked L, supports idxs

S , assignments A, outliers O
1: DR← ∅
2: P← ∅
3: S ← ∅
4: for each xi ∈ D do
5: τ(xi) ← compute typicality of τ(xi,T D) with

equation 3
6: end for
7: µτ ← mean(τ)
8: στ ← std(τ)
9: for every xi ∈ D do . Outlier detection phase

10: if xi satisfyes Eq. 4 then
11: D← D \ {xi}

12: end if
13: end for
14: for every xi ∈ D do
15: τ(xi) ← compute typicality of τ(xi,T D) with

equation 3
16: end for
17: x← reorder vector(τ)
18: xM ← max(τ)
19: D← D \ {xM}

20: DR← DR ∪ {xM}

21: while D , ∅ do
22: xi ← find the closest point in P to xM

23: D← D \ {xi}

24: DR← DR ∪ {xi}

25: end while
26: P← P ∪ {xM}

27: for every xi in DR do
28: if τxi−1 < τxi ∧ τxi+1 < τxi then
29: P← P ∪ {xi}

30: end if
31: end for
32: if τxN > τxN−1 then
33: P← P ∪ {xN}

34: end if
35: S ← {S 0, . . . , S len(P)}

5

and the cluster Gini index. For each pure group,
all distances between nodes are scrutinized and an
edge is added between two nodes if their mutual
distance is smaller then the potential neighbour
threshold. For the spurious group, it is necessary to
compute also the Gini index that would result from
the aggregation of any couple of clusters that pass
the distance-based check. Thus with the parame-
ter α, the user is choosing the level of topological
constraining (unknown information extracted from
the data) to apply on a label-based aggregation cri-
terium. After all edges are formed, all found sets of
connected components couples are aggregated in
parallel and the training data assignments indexes
are updated. The pseudo-code of this step is shown
in the Algorithm 4;

The three steps loop continues until no cluster cou-
ples satisfy the distance-based threshold (td) or when
the number of clusters equals the number of detected
classes in the data. The pseudo-code of the full aggre-
gation phase is shown in the Algorithm 5.

Algorithm 2 Threshold Computation
Require: data D, assignments A, supports idxs S , met-

ric, α
Ensure: centroid distance distribution Dc, threshold td

1: (IDc,Nc)← S
2: Bc ← ∅

3: Dc ← ∅

4: for every id in IDc do
5: Bc ← sum(D[A = id)/Nc

6: end for
7: Dc ← distances between all centroids Bc

8: compute threshold td through Eq. 7

Algorithm 3 Purity Grouping
Require: assignments A, supports idxs S , labels L
Ensure: separated supports idxs S G

1: (IDc,Nc)← S
2: classes C ← unique elements in L
3: S G ← ∅ : len(S G) = len(C) + 1
4: for every id in IDc do
5: Lc ← L[A = id]
6: if there is only one unique element u in Lc then
7: S G[c = u]← IDc

8: else
9: S G[−1]← IDc

10: end if
11: end for

Algorithm 4 Group Aggregation
Require: separated supports idxs S G, labels L, assign-

ments A, centroid distance distribution Dc, thresh-
old td

Ensure: supports idxs S , assignments A
1: for every group sG in S G do
2: Create graph G(IDc,Gini(Lc) using as attributes

all indexes and Gini indexes of clusters c in the
group sG

3: if sG is pure then
4: for every couple of nodes Gi j in G without

repetition do
5: if Dc[i, j] ≤ td then
6: add an edge Ei j between the nodes i

and j
7: end if
8: end for
9: find all the sets of connected components in

Ei j and aggregate them
10: merge IDc of all aggregated connected com-

ponents and update Nc.
11: else
12: for every couple of nodes Gi j in G without

repetition do
13: if Dc[i, j] ≤ td and Gini(Lc[i]) +

Gini(Lc[j]) <= Gini(Lc[i] ∪ Lc[j]) then
14: add an edge Ei j between the nodes i

and j.
15: end if
16: end for
17: find all the sets of connected components in

Ei j and aggregate them
18: merge IDc of all aggregated connected com-

ponents and update Nc.
19: end if
20: end for
21: S = S ∪ S G

22: update A with the updated IDc

Algorithm 5 Aggregation Phase
Require: data D, labels L, supports idxs S , assign-

ments A, metric, α
Ensure: supports idxs S , assignments A

classes c← unique elements in L
while len(S) ≥ len(c) do

Dc, td ← threshold computation(D, A, S , metric,
α)

S G ← purity grouping(A, S , L)
AS ← group aggregation(S g, L, A, Dc, td)

end while

6

As soon as the aggregation phase terminates, it be-
gins the separation phase. This phase aims at splitting
each cluster into sub-clusters, using both geometrical
and problem-specific information. i.e. instance labels
are used to estimate the purity of each cluster and split
it in order to get the as pure sub-clusters as geometri-
cally possible. This phase is necessary in order to exit
from the local minima of the Gini Index, coming from
both the initial typicality based clustering and the aggre-
gation phase. Given the local nature of both aggregation
and separation, this process has the effect of removing
instances from each cluster that has a weak geometrical
connection with the cluster (in other words, instances
which are in the outskirt of the cluster) and/or in order
to minimize the Gini Index, i.e. separating instances
with different labels. A CART is trained on each cluster
and then is asked to return the leaf index that predicted
each cluster instance. The original cluster is then re-
placed by as many clusters as the number of leaves in
the tree. If the clusters configuration after the separa-
tion phase contains more clusters than in the previous
step, i.e. if any of the trees had more than one terminal
node, then the algorithm goes back to the beginning of
the aggregation phase, and the cycle starts again. This
cycle, as we demonstrate in Sec. 4.4 by injecting noise
in the data, is inherently robust to class noise because an
instance topologically similar to the rest of the cluster,
even if mislabeled, would be still kept inside the clus-
ter and not separated and, in the same way, an instance
sharing the same label as a given cluster but to topolog-
ically different from it would be still separated from the
cluster. The algorithm stops if no cluster separation is
registered or if the previous cycle cluster configuration
after separation is met again.

3.2. HyCASTLE Prediction

In the prediction phase, the algorithm computes the
probability that a given instance may belong to all clus-
ter present in the cluster configuration found in training
by computing its mean distance from the k closest mem-
bers of each cluster. The mean distance distribution is
converted into a probability distribution through the fol-
lowing equation:

Pd(ci) =
(1/dci)∑M
i=1(1/dci)

(8)

where Pd(ci) is the distance-based probability that the
instance belongs to the cluster ci and dci is the mean dis-
tance between the instance and the closest k members
of the cluster. To output the class probability, all prob-
abilities of single-class clusters, i.e. pure clusters, are

Algorithm 6 Separation Phase
Require: data D, labels L, supports idxs S , assign-

ments A
Ensure: Supports idxs S , assignments A

1: for every cluster C do
2: if len(C) > 1 then
3: l← labels in Cluster
4: DT ← CART model
5: DT.fit on (C, l)
6: LA← Ø
7: for every xk in Cluster do
8: LA← leaf assignments lak

9: end for
10: if len(LA) > 1 then
11: S ← LA
12: for every xk in Cluster do
13: Ak ← lak

14: end for
15: end if
16: end if
17: end for

summed to form the probability of their related classes
while probabilities relative to multi-class clusters, i.e.
spurious clusters, are divided among class probabilities
in proportion to each class frequency found in the clus-
ter. Given the explained probabilistic nature of the pre-
diction, we expect it to be resilient to class noise present
in the data.

3.3. Complexity Analysis
Assume that dataset D contains N samples with F

attributes, the typicality clustering phase requires: (i)
the computation of all distances between the N sam-
ples to generate the typicality distribution and (ii) the in-
stances ordering HyCASTLEting with the highest typi-
cality object to find local maxima of the typicality dis-
tribution around which the clusters are generated. In
the worst possible scenario, such operations present a
computational complexity of O((FN)2). In the aggre-
gation and separation phases, given that the number of
found clusters through typicality is M < N, the com-
putational complexity goes respectively as O((FM)2) in
aggregation and as O(MlogN) in separation. Thus the
total computational complexity of the proposed method
is O((FN)2).

4. Experiments

In this section, we describe the dataset used for eval-
uating the proposed model performance, we analyze

7

the effect of parameter choices on classification perfor-
mance, we compare the proposed model with the AbDG
model presented in Bertini et al. [12], the two mod-
els presented in Xiao et al. [7] HCFC-K and HCFC-
D, the K-means+ID3 model proposed in Gaddam et
al. [9], the TBWC model proposed in Kaewchinport
et al. [6], the RK+SVM model proposed by Rajoma-
hamed et al. [8] and six classical supervised classifica-
tors C4.5 [14], KNN [16], SVM[17], NB [18], LR [19]
and MLP [20] and then we compare the classification
performances of HyCASTLE, HCFC-K, HCFC-D, and
other supervised classifcators on a dataset containing
class noise [33]. To compare HyCASTLE performance
with both the AbDG [12] model and the HCFC-K and
HCFC-D [7] models we employed the same experimen-
tal strategies used in the respective articles and com-
pared our results with the best results reported in the
respective papers. In order to compare with Bertini et
al. [12], we employed a ten times repeated double 10-
fold stratified cross-validation strategy in which the in-
ner loop selects the best model parameters using the
validation set, while the generalization errors are esti-
mated using a previously unseen test set. In order to
compare with Xiao et al. [7], we employed a ten times
repeated fivefold-cross-validation strategy. First, each
dataset was divided in five random subsets. Then iter-
atively one set was selected as the test set, one was se-
lected from the remaining four set as the validation set
and the remaining three as the training set. Each model
was trained on the training set, its parameters were op-
timized on the validation set through a grid-search, and
its performance was evaluated on the test set. The pro-
cess was then repeated five times to ensure that each
of the subsets was used as test set once. The reported
model performance on a dataset is then the average per-
formance on the five folds. The grid-search intervals
of the remaining models were selected following the
guidelines provided by their authors in the respective
papers or, if not provided, given our knowledge about
the models:

• both K-means+ID3 and RK+SVM need to opti-
mize the number of clusters K and thus following
the prescription in [9] and [8] K was respectively
searched in the interval [2, 20] and in the interval
[2, 10] with a step-size of 1;

• TBWC needs to optimize the number of trees (n)
and the optimal number of clusters K. Following
the prescription in [6], we searched for the optimal
n and K in the interval [5, 40] with a step-size of 5;

• KNN needs to optimize the number of clusters K

and thus K was searched for the optimal value in
the interval [1, 20] with a step-size of 1;

• MLP was initialized with two hidden layers with
a number of neurons equaling to 2 · n − 1 in the
first layer and n + 1 in the second layer where n is
the number of input features and a ReLU activation
function;

• SVM was implemented through the Scikit-learn li-
brary. [34], we selected a radial basis function ker-
nel and, as advised by the authors of the library, the
kernel parameter γ was selected as 1/n with n the
number of input features;

• C4.5 was implemented through the Chefboost li-
brary. [35].

HyCASTLE, as discussed in Sec. 3, needs to optimize
3 parameters to find the optimal solution: (i) the met-
ric used for distance calculation was selected among
the Euclidean, Cityblock, Cosine and Minkowski dis-
tances; (ii) the α value, used to control the topology-
based selection of candidates for aggregation, was se-
lected in the interval [1, 20] with an increment of 1 and
(iii) the k value, used to select the number of representa-
tive points for each cluster in prediction, was selected in
the interval [1, 30] with an increment of 1. Because NB
and K-means-ID3 can process only discrete attributes,
we made use of the procedure described in Fayyad and
Irani. [36] to discretize any continuous attribute before
applying the models and because HyCASTLE cannot
handle categorical attributes if an ordering could be es-
tablished, we employed an Ordinal Encoding [1]; other-
wise, we employed a One-Hot encoding, also known as
1-of-K scheme [1], to convert the categorical attributes
in numerical ones.

4.1. Parameter Analysis

In this subsection, we analyze the effects of parame-
ter choices on HyCASTLE classification performance.
Specifically, we fixed the metric as the Euclidean dis-
tance for simplicity and considered the effect on the per-
formance of the α coefficient and of the number of clus-
ter representatives k only. We decided not to analyze the
effect of the choice of metric on the model performance
for two main reasons: i) the best metric is completely
dependent upon the data and its effect are not easily ex-
plained and ii) it would have made the effect of the other
two parameters much harder to explain. Nevertheless
by comparing the best accuracy shown in Fig. 2 and 3
with the ones relative to the same datasets in Table 2
and 4, it can be seen that, as stated in Sec. 3, the choise

8

Dataset Instance Attribute Class
Abalone 4177 8 28
Auto 205 26 6
Balance 625 4 3
Blood-Transfusion (BT) 748 5 2
Connectionist 208 60 2
Credit Approval 690 15 2
Dermatology 366 33 6
E.coli 336 8 8
Flags 194 30 8
Flare 1389 10 2
Frogs-MFCCs-Family (FMF) 7196 22 4
Glass 214 10 6
Haberman 306 3 2
Image Segmentation 2310 19 7
Iris 150 4 3
Magic 19020 11 2
Monk2 432 7 2
Parkinsons 197 23 2
Pima 768 8 2
Post Operative 90 8 3
Seeds 210 7 3
Soybean 307 35 15
Sonar 208 60 2
Teaching-Assistant-Evaluation (TAE) 151 5 3
User-Knowledge-Modeling (UKM) 403 5 4
Vertebral-column-2C (VC2) 310 6 2
Vertebral-column-3C (VC3) 310 6 3
Waveform 5000 21 3
Wholesale Customer 440 8 2
Wilt 4889 6 2
Wine 178 13 3
Breast Cancer Wisconsin 569 30 2Diagnostic (WDBC)
Breast Cancer Wisconsin 198 34 2Prognostic (WPBC)
Yeast 1484 8 9
Zoo 101 17 7

Table 1: UCI Datasets. [25] for Classification Experiments; in order
the dataset name, the number of instances, the number of attributes
and the number of classes.

of metric has a quite consistent effect on HyCASTLE
performance. All tests were performed by splitting each
dataset in train, validation, and test sets with the follow-
ing percentages [0.6, 0.2, 0.2]. Given the lack of prior
knowledge of the effect of one parameter over the other,
we fixed the variation of both parameters in the interval
[1, 20] and then, supposing we wanted to measure the
effect of the first parameter, we firstly fixed the value of
both parameters to 1 and trained the model on the train
set. Then we searched for the optimal value of the sec-
ond parameter on the validation set. Having found it, we
fixed it and iteratively trained and evaluated the model
by increasing the value of the first parameter each time.
The same thing was performed by switching the first
parameter with the second. Given the α also control the
granularity of the produced clustering, we also recorded
the number of final clusters for each value of α. The
analysis, whose results are summarized in Fig. 2 and 3,

Figure 2: On the top panel, it is shown the classification accuracy
obtained on the Zoo dataset from UCI. [25] by constant variation of
the α (blue plot) and k parameters value in the range [1, 20]; on the
lower panel, the number of clusters in the final cluster configuration
obtained through α variation.

9

Figure 3: On the top panel, it is shown the classification accuracy
obtained on the Wine dataset from UCI. [25] by constant variation of
the α (blue plot) and k parameters value in the range [1, 20]; on the
lower panel, the number of clusters in the final cluster configuration
obtained through α variation.

was carried on two exemplary datasets from the ones
listed in Table 1 Wine and Zoo. As it is seen the num-
ber of clusters, as explained in Sec.3.1 has the number
of classes detected in the training data as a lower bound
(respectively 7 for Zoo and 3 for Wine) and its trend
is completely dictated by the value of α. In Wine, see
Fig 3, as α increases, the number of clusters that pass the
distance-based threshold increase and thus more clus-
ters are aggregated with the results of having the num-
ber of clusters in the final cluster configuration dropping
almost immediately to 3. At the same time, the model
accuracy decreases, showing how having 5 clusters in
the final cluster configuration with two classes each split
over 2 sub-clusters helps in the prediction phase. In this
case the model shows a better accuracy with a value of
K of at least 5. In Zoo, we find a similar situation for
the α value, the number of clusters it is always equal to
the number of classes while the accuracy decreases with
an increasing k value. It is worth noticing that when α
reaches a high enough value, then its effect on the model
performance stabilizes. This is explained by the fact
that when α reaches a given dataset dependent value, all
clusters pass the distance-based threshold and thus any
further increment of α does not impact in any meaning-
ful way.

4.2. Evaluating HyCASTLE Performance
Table 2 shows the classification accuracy of HyCAS-

TLE compared with the other 11 models on 23 of the
35 datasets listed in Table 1. These datasets were se-
lected in order to directly compare with Xiao et al. [7].
As it can be seen, HyCASTLE shows a higher mean
classification accuracy with respect to the other mod-
els. In order to test if statistical differences between
the 12 models classification performances can be con-
sidered significant, we employed the Friedman test [37]
and the Iman-Davenport test [38] with a null hypothesis:
“all models show the same classification performance”.
The statistic of the Friedman test is distributed follow-
ing and F-distribution. The degrees of freedom of the F-
distribution are given by (Na−1) and (Na−1)× (Nd −1)
where Na is the number of tested algorithms and Nd is
the number of dataset used for the comparison. In this
case Na = 12 and Nd = 23 and thus the critical value
for a confidence level of α = 0.05 is F(11, 242) = 1.83.
Any value higher than the critical value guarantees the
rejection of the null hypothesis with a confidence value
of 95%. Additionally we performed a Nemenyi post-
hoc test [39] with a significance level of α = 0.05. The
test is based on the absolute difference of the average
rankings of the classifiers. Given the significance level,
the test determines the critical difference (CD = 3.50 in

10

Dataset HyCASTLE HCFC-K HCFC-D C4.5 SVM LR KNN NB MLP RK+SVM K-means+ID3 TBWC
Abalone 28.12 ± 0.12 26.05 ± 0.46 25.91 ± 0.68 23.15 ± 1.92 25.12 ± 2.46 23.78 ± 1.94 25.95 ± 0.67 24.53 ± 0.74 26.88 ± 0.39 24.23 ± 2.16 23.01 ± 1.15 24.92 ± 1.35
Auto 73.12 ± 2.28 76.10 ± 2.02 74.39 ± 3.19 74.09 ± 2.97 67.14 ± 5.87 63.89 ± 5.48 68.12 ± 8.71 45.32 ± 7.83 69.38 ± 7.5 73.28 ± 7.89 70.64 ± 4.12 61.49 ± 5.12
BT 80.00 ± 2.06 78.48 ± 3.54 77.94 ± 3.24 76.94 ± 4.03 76.22 ± 3.98 76.92 ± 3.64 79.6 ± 1.61 71.12 ± 3.57 76.27 ± 1.37 69.87 ± 4.76 75.16 ± 3.89 74.23 ± 4.43
Connectionist 86.19 ± 3.16 79.88 ± 5.35 76.68 ± 6.92 72.56 ± 6.17 74.39 ± 6.28 75.94 ± 4.46 81.43 ± 6.63 64.25 ± 5.98 78.1 ± 5.08 70.01 ± 9.66 76.98 ± 3.12 73.96 ± 3.21
Dermatology 99.16 ± 1.66 93.98 ± 2.90 94.27 ± 3.60 91.00 ± 3.25 97.25 ± 1.96 98.16 ± 1.84 83.61 ± 2.39 84.25 ± 3.45 99.44 ± 1.11 91.15 ± 1.93 88.17 ± 5.64 79.22 ± 4.34
Ecoli 88.35 ± 3.70 83.05 ± 4.50 83.78 ± 2.75 79.18 ± 3.13 81.78 ± 4.15 81.16 ± 4.84 88.06 ± 3.40 72.60 ± 4.12 55.59 ± 10.58 80.98 ± 3.99 79.99 ± 4.91 81.48 ± 3.0
Flags 69.47 ± 2.05 63.43 ± 3.07 63.66 ± 2.53 62.00 ± 3.00 34.15 ± 3.97 48.23 ± 8.11 67.89 ± 6.94 39.81 ± 5.25 63.08 ± 6.61 34.21 ± 1.83 61.12 ± 2.14 44.81 ± 4.75
Flare 87.15 ± 1.98 84.70 ± 4.25 85.11 ± 3.00 81.76 ± 8.84 84.16 ± 3.49 84.48 ± 4.29 86.76 ± 1.66 56.38 ± 5.74 86.17 ± 0.76 83.77 ± 3.44 83.12 ± 5.98 84.12 ± 4.33
FMF 95.46 ± 1.83 96.13 ± 0.52 95.57 ± 0.82 93.29 ± 1.14 92.72 ± 0.84 92.12 ± 0.65 70.76 ± 0.23 64.29 ± 1.63 98.37 ± 0.24 93.74 ± 0.87 93.55 ± 0.94 93.79 ± 1.98
Glass 74.42 ± 3.28 70.73 ± 3.55 70.78 ± 8.64 62.44 ± 8.12 48.13 ± 4.67 61.84 ± 3.27 70.71 ± 3.48 59.46 ± 7.27 68.84 ± 4.79 62.04 ± 7.73 67.21 ± 3.76 58.21 ± 7.31
Magic 84.36 ± 2.26 82.51 ± 0.49 80.81 ± 0.91 80.15 ± 0.83 67.82 ± 0.68 77.65 ± 2.16 83.61 ± 0.38 71.36 ± 1.48 86.36 ± 0.65 68.32 ± 1.55 80.87 ± 0.44 78.99 ± 0.65
Monk2 90.83 ± 1.97 86.36 ± 2.87 86.20 ± 3.10 79.22 ± 2.12 65.43 ± 1.89 68.14 ± 1.46 73.67 ± 2.27 59.97 ± 3.64 67.93 ± 2.12 63.39 ± 1.48 80.21 ± 7.13 66.13 ± 3.19
Parkinsons 94.36 ± 1.32 91.28 ± 3.49 87.95 ± 6.13 81.98 ± 4.96 72.88 ± 4.87 85.00 ± 1.92 93.33 ± 2.61 74.39 ± 9.08 89.74 ± 4.29 75.87 ± 3.12 86.17 ± 3.41 80.96 ± 4.22
Seeds 93.39 ± 2.10 91.90 ± 2.72 90.48 ± 5.39 91.02 ± 5.12 93.27 ± 2.16 91.78 ± 2.42 92.86 ± 3.98 88.45 ± 5.12 92.86 ± 3.98 93.72 ± 2.94 90.77 ± 7.98 90.14 ± 6.21
Soybean 81.51 ± 3.36 89.67 ± 3.29 88.96 ± 2.05 84.76 ± 0.98 91.26 ± 4.64 85.14 ± 2.45 83.77 ± 1.51 83.97 ± 3.76 88.52 ± 4.6 86.41 ± 4.55 84.19 ± 4.12 71.54 ± 2.46
TAE 66.66 ± 5.96 64.90 ± 3.85 66.55 ± 4.94 60.28 ± 4.12 44.12 ± 2.99 46.13 ± 2.67 59.33 ± 5.73 42.87 ± 5.91 49.68 ± 8.06 51.95 ± 2.12 59.38 ± 5.14 44.63 ± 3.43
UKM 91.83 ± 0.78 92.31 ± 0.58 91.07 ± 0.37 89.47 ± 0.76 88.64 ± 5.78 72.36 ± 7.61 88.64 ± 4.38 88.56 ± 4.93 96.54 ± 1.44 91.13 ± 7.11 88.13 ± 7.45 91.78 ± 2.72
VC2 84.51 ± 2.15 83.55 ± 2.45 82.58 ± 4.90 81.48 ± 3.81 74.35 ± 3.64 79.96 ± 5.32 81.61 ± 4.96 67.15 ± 2.96 83.55 ± 2.77 75.89 ± 6.77 80.93 ± 1.94 80.66 ± 6.0
VC3 81.61 ± 4.27 81.29 ± 2.65 83.39 ± 2.91 78.12 ± 4.29 79.96 ± 4.65 82.16 ± 4.58 80.97 ± 3.29 71.69 ± 4.13 75.81 ± 13.91 74.19 ± 9.07 78.16 ± 2.69 80.12 ± 4.17
WC 93.86 ± 3.09 90.68 ± 2.67 90.16 ± 1.23 87.98 ± 2.37 71.35 ± 6.14 90.01 ± 3.92 92.5 ± 2.93 69.16 ± 2.98 67.05 ± 18.62 88.13 ± 5.38 85.63 ± 1.83 75.01 ± 1.84
Wilt 97.04 ± 0.31 98.22 ± 0.18 97.59 ± 0.43 95.96 ± 0.98 95.14 ± 1.62 96.03 ± 0.72 95.68 ± 0.62 88.47 ± 0.65 94.63 ± 0.0 94.63 ± 0.43 94.99 ± 4.55 94.99 ± 0.93
Yeast 93.86 ± 3.09 51.49 ± 2.84 53.40 ± 2.63 44.39 ± 4.12 57.49 ± 3.60 50.61 ± 2.67 58.72 ± 2.22 26.12 ± 3.41 59.19 ± 2.01 50.06 ± 2.66 55.83 ± 4.97 51.83 ± 2.15
Zoo 97.00 ± 2.00 99.05 ± 2.64 97.55 ± 2.73 91.10 ± 2.53 94.89 ± 8.23 88.04 ± 6.83 96.0 ± 5.83 91.25 ± 4.93 94.29 ± 4.67 88.39 ± 7.80 96.46 ± 3.21 93.58 ± 7.24
Average 84.14 ± 3.69 80.68 ± 2.65 80.22 ± 3.18 75.28 ± 3.46 72.94 ± 3.85 74.76 ± 3.62 78.41 ± 3.21 65.45 ± 4.29 76.88 ± 4.59 73.28 ± 4.31 77.42 ± 3.94 72.9 ± 3.7
Percentage 60.87% 13.04% 4.35% 0.00% 4.35% 0.00% 0.00% 0.00% 17.39% 0.00% 0.00% 0.00%

Table 2: Comparison of Classification Accuracy (Mean ± Standard Deviation %) between HyCASTLE, the two models presented in Xiao et al. [7]
HCFC-K and HCFC-D, C4.5 [14], SVM[17], LR [19], KNN [16], NB [18], MLP [20], the RK+SVM model poposed by Rajomahamed et al. [8],
the K-means+ID3 model proposed in Gaddam et al. [9] and the TBWC model proposed in Kaewchinport et al. [6]. The last two rows show
respectively the average score over all datasets and the winning percentage for each model. In bold are highlighted the best model for each dataset.

our case) and if the difference between the average rank-
ings of two given algorithms is greater then the CD, then
the null hypothesis that the two algorithms show the
same classification performance is rejected. Both the

Method Test Value Critical Value Hypothesis
Friedman 124.37 19.67 rejected
Iman-Davenport 21.27 1.83 rejected

Table 3: Results of the Friedman and Iman-Davenport tests for testing
the statistical differences between the 12 models performances shown
in Table 2.

Friedman and Iman-Devenport test statistics followed a
χ2 distribution with 11 degrees of freedom and, as it is
seen in Table 3 both tests values exceed their critical
values. Thus we can reject the null hypothesis, i.e. at a
95% confidence level the model’s classification perfor-
mances show differences that can be deemed as statisti-
cally significant.

Figures 4 and 5 show the Nemenyi post-hoc test re-
sults. In the first figure, if models are connected with
a line, it means that no significant difference in per-
formance can be detected. In the second, each node
is ranked by its model CD value, the lower it is, the
more different is the performance of that model from
the rest. If the absolute difference between the CD val-
ues of two nodes is smaller then critical difference, then
the nodes are connected and no significant difference in
performance can be detected between the two relative
models. From both figures, it can be deduced that no
statistically significant difference is shown at a 95% in-
terval between NB, SVM, C4.5, LR, TBWC, RK+SVM

Figure 4: Critical difference plot:any two algorithms not joined by a
line may be regarded as having different classification performances.
The plot refers to the results shown in Table 2.

and K-means+ID3. HCFC-D and HCFC-K show better
performance when compared to the other models, and
their results are compatible with KNN, MLP and K-
means+ID3. HyCASTLE, nevertheless has a compat-
ible performance with both HCFC-D and HCFC-K and
KNN, shows to have a performance significantly differ-
ent from all other models and a lower CD when com-
pared to the other hybrid models. Furthermore from the
statistics presented as box plots in Fig. 6, it can be seen
that HyCASTLE, besides having the highest accuracy
(median value in highlighted in red), has the lowest vari-
ation and thus is performance is more consistent over
the experiments when compared to the performance of
the other models.

11

Figure 5: Detailed Critical difference plot: if two nodes are joined it
means that the null hypothesis of having different performances can-
not be rejected. The plot refers to the results shown in Table 4.

Figure 6: Box Plot comparison for the 12 models listed in Table 2.

Figure 7: Critical difference plot:any two algorithms not joined by a
line may be regarded as having different classification performances.
The plot refers to the results shown in Table 4.

4.3. Comparison with the AbDG model

Table 4 shows the classification accuracy of HyCAS-
TLE, AbDG, C4.5, KNN and MLP on 16 of the 35
datasets listed in Table 1.These dataset were selected
in order to directly compare with Bertini et al. [12].
The three traditional supervised models (C4.5, KNN
and MLP) were chosen given their good performance
on the 23 dataset listed in Table 2.

As it is seen from Table 4, HyCASTLE shows a
higher average classification accuracy with a lower av-
erage standard deviation than other models. Following
the same procedure described in Sec. 2, we produced
the Friedman, Iman-Davenport and Nemenyi post-hoc
tests to verify whether the 5 models show statistically
significant differences in classification performance. In
this case Na = 5 and Nd = 16 and thus the critical value
for a confidence level of α = 0.05 is F(4, 60) = 2.52.

Table 5 shows the tests results,and given that both val-
ues surpass their critical values, we can safely reject the
null hypothesis.

We therefore preceded to perform the Nemenyi test
(in this case the CD = 1.56) and, as it is seen from both
Fig. 7 and 8, KNN, MLP and C4.5 show compatible
performance. AbDG performance is not significantly
different than that of MLP and KNN while HyCASTLE
performance is significantly better then that of C4.5 and
MLP but still similar to that of AbDG and KNN. As
preceded in Sec. 4.2, we produced the box plot statistics

12

Dataset HyCASTLE AbDG C4.5 KNN MLP
Balance 94.71 ± 3.20 91.70 ± 1.30 78.60 ± 2.64 89.91 ± 3.22 90.72 ± 3.59
Blood Transfusion 80.00 ± 2.06 77.80 ± 3.30 76.94 ± 4.03 79.60 ± 1.61 76.27 ± 1.37
Credit Approval 88.09 ± 2.49 89.00 ± 3.90 84.41 ± 2.98 87.17 ± 2.23 81.98 ± 2.24
Flags 69.47 ± 2.05 65.50 ± 10.7 62.00 ± 3.00 67.89 ± 6.94 63.08 ± 6.61
Glass 74.42 ± 3.28 70.90 ± 7.70 62.44 ± 8.12 70.71 ± 3.48 68.84 ± 4.79
Haberman 77.05 ± 3.59 75.30 ± 5.80 70.30 ± 4.20 77.37 ± 5.01 73.87 ± 0.64
Image Segmentation 98.68 ± 0.43 87.30 ± 6.30 88.12 ± 5.39 96.06 ± 0.50 97.31 ± 0.40
Iris 96.00 ± 1.33 95.80 ± 4.50 94.15 ± 3.96 95.12 ± 1.30 89.33 ± 12.18
Pima 75.32 ± 2.09 76.50 ± 4.60 72.5 ± 4.92 75.19 ± 1.44 75.97 ± 3.55
Post Operative 72.41 ± 8.64 73.30 ± 7.50 68.21 ± 15.71 67.05 ± 7.97 65.55 ± 6.47
Soybean 81.51 ± 3.36 94.5 ± 2.40 91.40 ± 3.32 87.33 ± 1.51 88.52 ± 4.60
Sonar 85.71 ± 3.98 81.70 ± 7.60 75.12 ± 9.17 81.42 ± 6.63 79.52 ± 6.32
Waveform 87.15 ± 1.12 80.80 ± 5.10 72.17 ± 5.83 84.62 ± 0.53 86.52 ± 0.66
Wine 100 ± 0.00 98.10 ± 3.20 92.76 ± 6.11 98.33 ± 1.36 98.33 ± 1.36
WDBC 98.42 ± 0.65 95.00 ± 2.90 92.58 ± 3.27 98.24 ± 0.96 97.54 ± 0.86
WPBC 80.00 ± 2.51 79.20 ± 5.20 75.67 ± 1.98 77.94 ± 2.05 74.87 ± 4.10
Average 84.93 ± 2.55 83.28 ± 5.28 78.59 ± 5.28 83.37 ± 2.92 81.76 ± 3.73
Percentage 68.75 25.00 0.00 6.25 0.00

Table 4: Comparison of Classification Accuracy (Mean ± Standard Deviation %) between HyCASTLE, AbDG [12], C4.5 [14], KNN [16] and
MLP [20]. The last two rows show respectively the average score over all datasets and the fraction of time each model was selected as the best
model. In bold are highlighted the best model for each dataset.

Figure 8: Detailed Critical difference plot: if two nodes are joined it
means that the null hypothesis of having different performances can-
not be rejected. The plot refers to the results shown in Table 4.

Method Test Value Critical Value Hypothesis
Friedman 29.74 9.48 rejected
Iman-Davenport 13.02 2.52 rejected

Table 5: Results of the Friedman and Iman-Davenport tests for testing
the statistical differences between the 5 models performances shown
in Table 4.

(see Figure 9) for the 5 models. As it can be seen Hy-
CASTLE has a slightly higher median value that those
of the other models but a higher scatter when compared
to KNN.

4.4. Evaluating HyCASTLE performance with Increas-
ing levels of Class Noise

One of the main issues presented in classification
problems is the presence of high levels of noise, and
thus any classification model should be constructed in
order to be resilient to said noise. For example, the
presence of noise in the data may produce the forma-
tion of small clusters of a particular class in an area
of the parameter space where said class should not be
present or could change the class boundaries between
two classes making them overlap. Both this problem
may cause a classification model to seriously worsen
its performance. In the framework of supervised ma-
chine learning, noise can be divided into two main fam-
ilies [40, 41]: class noise and attribute noise. In [33],

13

Figure 9: Box Plot comparison for the 6 models listed in Table 4.

the authors demonstrated that both types of noise could
have serious negative impacts on models classification
performances. Nevertheless, it has been shown by the
same authors that attribute noise may be more harmful
then class noise, in this work, we only focus on the lat-
ter. By definition, class noise occurs when examples are
incorrectly labelled but because this eventuality is pur-
posely avoided in all UCI [25] datasets, we had to manu-
ally inject such noise in the data following the technique
adopted by Zhu and Wu [33]. The technique uses a pair-
wise scheme to change the labels of the two most promi-
nent classes in the data. Given the two classes (X,Y) and
a noise level σ, an instance of class X has a x% prob-
ability of being corrupted and mislabeled as Y and so
does an instance of class Y . Therefore we took the 23
datasets listed in Table 2 and repeated the experiments
applying two increasing levels of class noise: σ = 0.15
and σ = 0.30. Again we chose to compare HyCAS-
TLE classification performance with the two models
proposed by Xiao et al. (HCFC-K and HCFC-D) [7]
and the three standard classifiers that showed the best
average accuracy on the same datasets, KNN, MLP and
C4.5. HCFC-K and HCFC-D were chosen among the
other hybrid models, not only because they show good
and consistent performances in our previous experiment
but also because, to our knowledge, their authors are the
only ones in literature subjecting their proposed hybrid
models to this same noise analysis. Fig. 10 shows the
six average accuracy on the 23 datasets with the two
levels of class noise. As it is seen, HyCASTLE shows a

Figure 10: Average accuracy of HyCASTLE, HCFC-K, HCFC-D,
C4.5, KNN and MLP on the 23 datasets listed in Table 2 when sub-
jected to increasing levels of class noise; σ = 0. i.e clean datasets,
σ = 0.15 and σ = 0.30.

better average performance across both noise levels.

5. Conclusions

In this article, we presented HyCASTLE a novel hy-
brid classification model which utilizes a compromise
between the data topology and the class labels to max-
imize its classification performances. Unlike other hy-
brid classifiers, the model employs a clustering refining
loop based on both data topology and class labels to find
a clustering configuration that reflects both the known
knowledge of the problem (labels) and the unknown
data topology. We evaluated HyCASTLE performances
on 35 benchmark datasets demonstrating that HyCAS-
TLE shows a better average classification performance
than several hybrid and traditional classification mod-
els. Furthermore, we artificially injected increasing lev-
els of class noise into 23 datasets and showed the Hy-
CASTLE, when compared to the best models found on
the previous experiments, is more resilient to class noise
and shows better average classification performances.
HyCASTLE has been developed in Python 3.8, and
it will be made publicly available through the Scikit-
Learn [34] API.

In future research, we will increase the amount of
information about the clustering configuration used for
prediction in fact, at this moment, a prediction is com-
puted only through distance and cluster information is

14

implicitly used, but it is our belief that adding infor-
mation about cluster structures, purity and mutual re-
lations explicitly through priors on the distance-based
probability assignment may improve HyCASTLE per-
formances especially in noisy environments. In this ar-
ticle, we didn’t study HyCASTLE performance on un-
balanced datasets, and we plan to investigate it. To con-
clude, we think that the natural evolution of HyCAS-
TLE is to become a semi-supervised model [42, 43, 44]
not only because it already performs clustering in a
completely data-driven way but because it already has
a way to measure the likelihood of correctness of the
prediction of an unseen instance through the differ-
ence between the membership probability of the win-
ning cluster and the remaining probability. This two
features could be used to implement a self-supervised
self-labelled method that should be able to solve both
main issues of such models: lack of sufficient initial la-
belled data and the inability to deal with non-spherical
data sets [45, 44, 46, 42, 47].

6. Acknowledgments

This work is entirely dedicated to the memory of our
dear colleague and mentor Prof. Antonio Picariello,
who left us suddenly and prematurely during the draft-
ing of the paper and whose human and professional con-
tribution was fundamental and decisive. We all shall
badly miss his insight and his friendship.
MB acknowledges financial contributions from the
agreement ASI/INAF , Euclid ESA mission - Phase D
and the INAF PRIN-SKA 2017 program 1.05.01.88.04.
GL acknowledges contribution from the Horizon 2020
EU program through the Marie Skłodowska-Curie grant
agreement No. 721463 to the SUNDIAL ITN network.
MDV acknowledge the contribution of the EUSTEMA
Group who sponsored his PhD fellowship. SC acknowl-
edges financial support from FFABR 2017 (Fondo di Fi-
nanziamento per le Attività Base di Ricerca).

References
[1] C. M. Bishop, Pattern Recognition and Machine Learning (In-

formation Science and Statistics), Springer-Verlag, Berlin, Hei-
delberg, 2006.

[2] O. Laurino, R. D’Abrusco, G. Longo, G. Riccio, Astroinfor-
matics of galaxies and quasars: a new general method for pho-
tometric redshifts estimation, MNRAS 418 (2011) 2165–2195.
doi:10.1111/j.1365-2966.2011.19416.x. arXiv:1107.3160.

[3] X. Ao, P. Luo, X. Ma, F. Zhuang, Q. He, Z. Shi,
Z. Shen, Combining supervised and unsupervised
models via unconstrained probabilistic embedding,
Information Sciences 257 (2014) 101–114. URL:
https://doi.org/10.1016/j.ins.2013.08.048.
doi:10.1016/j.ins.2013.08.048.

[4] J. Gao, F. Liang, W. Fan, Y. Sun, J. Han, A graph-
based consensus maximization approach for combining mul-
tiple supervised and unsupervised models, IEEE Trans-
actions on Knowledge and Data Engineering 25 (2013)
15–28. URL: https://doi.org/10.1109/tkde.2011.206.
doi:10.1109/tkde.2011.206.

[5] I. Bose, X. Chen, Hybrid models using unsupervised clustering
for prediction of customer churn, Journal of Organizational
Computing and Electronic Commerce 19 (2009) 133–151.
URL: https://doi.org/10.1080/10919390902821291.
doi:10.1080/10919390902821291.

[6] C. Kaewchinporn, N. Vongsuchoto, A. Srisawat, A
combination of decision tree learning and clustering
for data classification, in: 2011 Eighth International
Joint Conference on Computer Science and Software
Engineering (JCSSE), IEEE, 2011, pp. 363–367. URL:
https://doi.org/10.1109/jcsse.2011.5930148.
doi:10.1109/jcsse.2011.5930148.

[7] J. Xiao, Y. Tian, L. Xie, X. Jiang, J. Huang, A hybrid
classification framework based on clustering, IEEE Trans-
actions on Industrial Informatics 16 (2020) 2177–2188.
URL: https://doi.org/10.1109/tii.2019.2933675.
doi:10.1109/tii.2019.2933675.

[8] R. Rajamohamed, J. Manokaran, Improved credit card
churn prediction based on rough clustering and supervised
learning techniques, Cluster Computing 21 (2017) 65–77.
URL: https://doi.org/10.1007/s10586-017-0933-1.
doi:10.1007/s10586-017-0933-1.

[9] S. R. Gaddam, V. V. Phoha, K. S. Balagani, K-
means+id3: A novel method for supervised anomaly
detection by cascading k-means clustering and ID3 de-
cision tree learning methods, IEEE Transactions on
Knowledge and Data Engineering 19 (2007) 345–354.
URL: https://doi.org/10.1109/tkde.2007.44.
doi:10.1109/tkde.2007.44.

[10] T. Chakraborty, Ec3: Combining clustering and classification
for ensemble learning, in: 2017 IEEE International Conference
on Data Mining (ICDM), 2017, pp. 781–786.

[11] T. Ma, F. Wang, J. Cheng, Y. Yu, X. Chen, A hybrid spectral
clustering and deep neural network ensemble algorithm for in-
trusion detection in sensor networks, Sensors 16 (2016) 1701.
doi:10.3390/s16101701.

[12] J. R. Bertini, M. do Carmo Nicoletti, L. Zhao, Attribute-
based decision graphs: A framework for multiclass data
classification, Neural Networks 85 (2017) 69–84. URL:
https://doi.org/10.1016/j.neunet.2016.09.008.
doi:10.1016/j.neunet.2016.09.008.

[13] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classifi-
cation and Regression Trees, Wadsworth and Brooks, Monterey,
CA, 1984.

[14] S. L. Salzberg, C4.5: Programs for machine learn-
ing by j. ross quinlan. morgan kaufmann publish-
ers, inc., 1993, Machine Learning 16 (1994) 235–
240. URL: https://doi.org/10.1007/bf00993309.
doi:10.1007/bf00993309.

[15] U. M. Fayyad, K. B. Irani, Multi-interval discretization of
continuous-valued attributes for classification learning, IJCAI
(1993) 6–12.

[16] D. W. Aha, D. Kibler, M. K. Albert, Instance-based
learning algorithms, Machine Learning 6 (1991) 37–
66. URL: https://doi.org/10.1007/bf00153759.
doi:10.1007/bf00153759.

[17] Y. Zhang, Support vector machine classification algorithm and
its application, in: C. Liu, L. Wang, A. Yang (Eds.), Communi-
cations in Computer and Information Science, Springer Berlin

15

Heidelberg, Berlin, Heidelberg, 2012, pp. 179–186.
[18] M. Majka, naivebayes: High Performance Implementa-

tion of the Naive Bayes Algorithm in R, 2019. URL:
https://CRAN.R-project.org/package=naivebayes, r
package version 0.9.7.

[19] P. Peduzzi, J. Concato, E. Kemper, T. R. Holford, A. R.
Feinstein, A simulation study of the number of events
per variable in logistic regression analysis, Journal
of Clinical Epidemiology 49 (1996) 1373–1379. URL:
https://doi.org/10.1016/s0895-4356(96)00236-3.
doi:10.1016/s0895-4356(96)00236-3.

[20] T. Hastie, R. Tibshirani, J. Friedman, The Elements of
Statistical Learning, Springer New York, 2009. URL:
https://doi.org/10.1007/978-0-387-84858-7.
doi:10.1007/978-0-387-84858-7.

[21] A. Acharya, E. Hruschka, J. Ghosh, S. Acharyya, C3e: A frame-
work for combining ensembles of classifiers and clusterers, in:
Multiple Classifier Systems, Springer Berlin Heidelberg, 2011,
pp. 269–278. doi:10.1007/978-3-642-21557-5 29.

[22] M. Capó, A. Pérez, J. A. Lozano, An efficient k-
means clustering algorithm for tall data, Data Mining
and Knowledge Discovery 34 (2020) 776–811. URL:
https://doi.org/10.1007/s10618-020-00678-9.
doi:10.1007/s10618-020-00678-9.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based al-
gorithm for discovering clusters in large spatial databases with
noise, in: Proc. of 2nd International Conference on Knowledge
Discovery and, 1996, pp. 226–231.

[24] P. P. Angelov, X. Gu, J. C. Prı́ncipe, A generalized methodology
for data analysis, IEEE Transactions on Cybernetics 48 (2018)
2981–2993.

[25] D. Dua, C. Graff, UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml.

[26] L. C. Freeman, A Set of Measures of Centrality
Based on Betweenness, Sociometry 40 (1977) 35–
41. URL: http://dx.doi.org/10.2307/3033543.
doi:10.2307/3033543.

[27] G. Alsmeyer, Chebyshev’s inequality, in: International Encyclo-
pedia of Statistical Science, Springer Berlin Heidelberg, 2011,
pp. 239–240. doi:10.1007/978-3-642-04898-2 167.

[28] C. Gini, Variabilità e mutabilità: contributo allo stu-
dio delle distribuzioni e delle relazioni statistiche.
[Fasc. I.], Studi economico-giuridici pubblicati per
cura della facoltà di Giurisprudenza della R. Univer-
sità di Cagliari, Tipogr. di P. Cuppini, 1912. URL:
https://books.google.it/books?id=fqjaBPMxB9kC.

[29] M. Ankerst, M. M. Breunig, H. peter Kriegel, J. Sander, Optics:
Ordering points to identify the clustering structure, in: ACM
SIGMOD Record, ACM Press, 1999, pp. 49–60.

[30] A. Hinneburg, H.-H. Gabriel, Denclue 2.0: Fast clustering based
on kernel density estimation, in: M. R. Berthold, J. Shawe-
Taylor, N. Lavrač (Eds.), Advances in Intelligent Data Analysis
VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
70–80.

[31] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1967) 21–27.

[32] J. B. MacQueen, Some methods for classification and analy-
sis of multivariate observations, in: L. M. L. Cam, J. Neyman
(Eds.), Proc. of the fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, volume 1, University of California
Press, 1967, pp. 281–297.

[33] X. Zhu, X. Wu, Class noise vs. attribute noise: A quantitative
study, Artificial Intelligence Review 22 (2004) 177–210.
URL: https://doi.org/10.1007/s10462-004-0751-8.
doi:10.1007/s10462-004-0751-8.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011) 2825–2830.

[35] S. I. Serengil, chefboost, 2019. URL:
https://github.com/serengil/chefboost.

[36] U. M. Fayyad, K. B. Irani, Multi-interval discretization of
continuous-valued attributes for classification learning., in: IJ-
CAI, 1993, pp. 1022–1029.

[37] M. Friedman, A comparison of alternative tests of sig-
nificance for the problem of m rankings, The An-
nals of Mathematical Statistics 11 (1940) 86–92. URL:
http://www.jstor.org/stable/2235971.

[38] R. Iman, J. Davenport, Approximations of the critical region of
the friedman statistic, Communications in Statistics-Theory and
Methods 9 (1980) 571–595.

[39] P. Nemenyi, Distribution-free Multiple Com-
parisons, Princeton University, 1963. URL:
https://books.google.it/books?id=nhDMtgAACAAJ.

[40] X. Wu, Knowledge Acquisition from Databases, Tutorial Mono-
graphs in Artificial Intelligence, Intellect, Limited, 1995. URL:
https://books.google.it/books?id=UaRkE96JUssC.

[41] J. A. Sáez, M. Galar, J. Luengo, F. Herrera, Analyzing
the presence of noise in multi-class problems: allevi-
ating its influence with the one-vs-one decomposition,
Knowledge and Information Systems 38 (2012) 179–206.
URL: https://doi.org/10.1007/s10115-012-0570-1.
doi:10.1007/s10115-012-0570-1.

[42] D. Wu, M. Shang, X. Luo, J. Xu, H. Yan, W. Deng, G. Wang,
Self-training semi-supervised classification based on density
peaks of data, Neurocomputing 275 (2018) 180–191. URL:
https://doi.org/10.1016/j.neucom.2017.05.072.
doi:10.1016/j.neucom.2017.05.072.

[43] H. Gan, N. Sang, R. Huang, X. Tong, Z. Dan, Using
clustering analysis to improve semi-supervised classi-
fication, Neurocomputing 101 (2013) 290–298. URL:
https://doi.org/10.1016/j.neucom.2012.08.020.
doi:10.1016/j.neucom.2012.08.020.

[44] J. Li, Q. Zhu, Q. Wu, D. Cheng, An effective framework
based on local cores for self-labeled semi-supervised classifi-
cation, Knowledge-Based Systems 197 (2020) 105804. URL:
https://doi.org/10.1016/j.knosys.2020.105804.
doi:10.1016/j.knosys.2020.105804.

[45] J. Li, Q. Zhu, Q. Wu, A self-training method
based on density peaks and an extended parameter-
free local noise filter for k nearest neighbor,
Knowledge-Based Systems 184 (2019) 104895. URL:
https://doi.org/10.1016/j.knosys.2019.104895.
doi:10.1016/j.knosys.2019.104895.

[46] A. Rodriguez, A. Laio, Clustering by fast search and
find of density peaks, Science 344 (2014) 1492–1496.
URL: https://doi.org/10.1126/science.1242072.
doi:10.1126/science.1242072.

[47] Y. Wang, X. Xu, H. Zhao, Z. Hua, Semi-supervised
learning based on nearest neighbor rule and cut edges,
Knowledge-Based Systems 23 (2010) 547–554. URL:
https://doi.org/10.1016/j.knosys.2010.03.012.
doi:10.1016/j.knosys.2010.03.012.

16

